Abstract

This paper aims to investigate the dynamic event-triggered control problem for networked predictive control systems with random delays and disturbance. First, a discrete-time dynamic event-triggered control scheme, in which sensor information is only updated when it is necessary, is presented. Next, the systems are modeled as a time-delay singular Markovian jump systems with time-varying switching. Then, a dynamic event-triggered delay compensation control strategy is proposed. Sufficient conditions guaranteeing the asymptotically stable are derived based on the Lyapunov–Krasovskii functional method together with the linear matrix inequality (LMI) technique. Finally, simulation results verify the effectiveness of the proposed strategy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.