Abstract

Background: Resistance to EGFR-TKIs constitutes a major challenge for the management of EGFR-mutated NSCLC, and recent evidence suggests that deregulation of specific microRNAs (miRNAs) may influence resistance to targeted agents. In this retrospective study, we explored the role of specific plasmatic miRNAs (miR-21, miR-27a and miR-181a) as a surrogate for predicting EGFR-TKI performance in EGFR-mutated NSCLC patients. Methods: Plasma samples of 39 advanced EGFR-mutated NSCLC patients treated with EGFR-TKIs were collected at different points in time and miRNA levels were assessed by RT-PCR. Results: Higher basal values of miR-21 were reported in patients who achieved a partial/complete response (PR/CR) compared to those with stability/progression of disease (SD/PD) (p = 0.011). Along the same line, patients who experienced a clinical benefit lasting at least six months displayed higher basal levels of circulating miR-21 (p = 0.039). However, dynamic evaluation of miRNA values after two months from the start of EGFR-TKI treatment showed that patients who experienced SD had an increase in miR-21 levels (Fold Change [FC] = 2.6) compared to patients achieving PR/CR (p = 0.029). The same tendency was observed for miR-27a (FC = 3.1) and miR-181a (FC = 2.0), although without reaching statistical significance. Remarkably, preclinical studies showed an increase in miR-21 levels in NSCLC cells that became resistant after exposure to EGFR-TKIs. Conclusions: Our study provides interesting insights on the role of circulating miRNAs, in particular miR-21, and their dynamic change over time in predicting EGFR-TKI response in EGFR-mutated NSCLC.

Highlights

  • Lung cancer is the second most common malignancy and represents the leading cause of cancer-related death worldwide [1]

  • Given the fact that primary resistance to Epidermal Growth Factor Receptor (EGFR)-tyrosine kinase inhibitors (TKI) exists in a portion of patients in the presence of a sensitizing EGFR mutation, it is critical to detect potential biomarkers that can help identify the subgroup of patients with primary resistance to EGFR-TKIs therapy

  • The expression of miR-21 showed a large heterogeneity, and we evaluated whether the different sensitivity to drug treatment may be related to variable cellular miR-21 expression profiles (Table S1) and to phospho-EGFR in a panel of non-small-cell lung cancer (NSCLC) cells characterized by their

Read more

Summary

Introduction

Lung cancer is the second most common malignancy and represents the leading cause of cancer-related death worldwide [1]. Resistance to EGFR-TKIs constitutes a major challenge for the management of EGFR-mutated NSCLC, and recent evidence suggests that deregulation of specific microRNAs (miRNAs) may influence resistance to targeted agents. Dynamic evaluation of miRNA values after two months from the start of EGFR-TKI treatment showed that patients who experienced SD had an increase in miR-21 levels (Fold Change [FC] = 2.6) compared to patients achieving PR/CR (p = 0.029). Preclinical studies showed an increase in miR-21 levels in NSCLC cells that became resistant after exposure to EGFR-TKIs. Conclusions: Our study provides interesting insights on the role of circulating miRNAs, in particular miR-21, and their dynamic change over time in predicting EGFR-TKI response in EGFR-mutated NSCLC

Methods
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.