Abstract

A mathematical model is developed for a liquid flow on solid particles in a trickle bed reactor. A mathematical formulation is followed based on the liquid-solid model approach where the liquid phase with the (KCl) tracer is treated as a continuum. The physical modeling is discussed, including the formulation of initial and boundary conditions and the description of the solution methodology. Results of mathematical model are presented and validated. The model is validated through comparison using three experimental cases. The optimized values of the axial dispersion (Dax), liquid-solid mass transfer (kLS), and partial wetting efficiency (FM) coefficients are obtained simultaneously using the objective function. The behavior of Dax, kLS, and FM is analyzed by the empirical correlations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.