Abstract
A new covariance matrix estimator is proposed under the assumption that at every time period all pairwise correlations are equal. This assumption, which is pragmatically applied in various areas of finance, makes it possible to estimate arbitrarily large covariance matrices with ease. The model, called DECO, involves first adjusting for individual volatilities and then estimating correlations. A quasi-maximum likelihood result shows that DECO provides consistent parameter estimates even when the equicorrelation assumption is violated. We demonstrate how to generalize DECO to block equicorrelation structures. DECO estimates for U.S. stock return data show that (block) equicorrelated models can provide a better fit of the data than DCC. Using out-of-sample forecasts, DECO and Block DECO are shown to improve portfolio selection compared to an unrestricted dynamic correlation structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.