Abstract

The electrophoretic behavior of a droplet in a spherical cavity subject to an alternating electric field is analyzed theoretically under the conditions of an arbitrary level of surface potential and double-layer thickness. The influences of the thickness of the double layer, the level of surface potential, the size of a droplet, the viscosity of the droplet fluid, and the frequency of the applied electric field on the electrophoretic behavior of a droplet are examined through numerical simulations. We show that, because of the effect of double-layer deformation, the magnitude of the electrophoretic mobility of a droplet could have a local maximum and the phase angle could have a negative (phase lead) local minimum as the frequency of the applied electric field varies. In general, the lower the surface potential, the thicker the double layer and the larger the viscosity of the droplet fluid, and the more significant the boundary effect, the smaller the magnitude of the electrophoretic mobility of a droplet.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call