Abstract
Surface fault rupture has caused significant damage to structures in several earthquakes. The propagation of the bedrock fault rupture through the overlying soil deposit has been studied by several researchers; however, the effects of fault rupture dynamics, as opposed to pseudostatic fault movement, have not yet been evaluated. There is the potential for dynamic effects to influence significantly structural damage due to the rapid rate of deformation imposed by surface fault rupture. Numerical simulations are performed to analyze the effects of the rate of fault rupture on dip-slip surface fault rupture for free-field and soil-structure interaction conditions. The numerical results indicate that in some limited scenarios, fault rupture dynamics can influence the amount of structural damage expected for a structure located near a fault. However, in most scenarios, fault rupture dynamics is expected to play a secondary role compared to fault, soil, and structural characteristics in evaluating building performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.