Abstract

Edible insects have become a recognized alternative and sustainable source of high-quality proteins and fats for livestock or human consumption. In the production process of black soldier fly (BSF), (Hermetia illucens L. [Diptera: Stratiomyidae]), initial substrate pH is a critical parameter to ensure the best value of insect biomass, life history traits, and quality bio-fertilizer. This study examined the impact of initial pH values on BSF larvae production, development time, and adult longevity. The BSF were reared on artificial diet with initial pH of 2.0, 4.0, 6.0, 8.0, and 10.0; the control was set at 7.0. Final BSF larval weight was significantly greater in substrates having initial pH 6.0 (0.21 g), control 7.0 (0.20 g), and 10.0 (0.20 g) with no significant difference among them, whereas larval weight reared with initial pH 2.0 and 4.0 were lowest at 0.16 g (-23%). Prepupal weight was greatest when larvae were reared on substrates with initial pH 6.0 (0.18 g), control 7.0 (0.19 g), 8.0 (0.18 g), and 10.0 (0.18 g). In contrast, the prepupal weight of larvae reared on diets with initial pH 2.0 was lowest at 0.15 g (-22%). Larval development time was 21.19 d at pH 8.0, about 3 d (12.5%) shorter than that of those reared on diets with initial pH 6.0, 7.0 control, and 10.0. In all treatments, pH shifted to 5.7 after 3-4 d and 8.5 after 16-17 d except for two groups (2.0 and 4.0) where the pH remained slightly acidic 5.0 and 6.5, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call