Abstract

Hopkinson bar techniques have played an important role in the study of high-rate deformation and fracture behavior of materials. In the current work, a split Hopkinson pressure bar was developed for dynamic four-point bend fracture testing, referred to as a “two-bar (incident and transmitted bars)/four-point” (2-bar/4-pt) bend test. To further understand some fundamental issues regarding stress wave propagation in this 2-bar/4-pt bend testing system, dynamic fracture tests were performed in pulse-shaped and unshaped pulse testing conditions. The effect of the pulse shaper on the incident pulse characteristics (rise time and duration), specimen’s dynamic response (load and loading point displacement), crack initiation time and stress-state equilibrium were investigated experimentally in the current work. The present results show that stress state equilibrium can be achieved prior to fracture initiation in notched and precracked specimens. In the pulse-shaped bending test, the specimen is more likely to attain stress-state equilibrium than in an unshaped incident pulse test. The crack initiation time was extended and the time required for attaining stress equilibrium was reduced by pulse shaping due to the tailored incident pulse having a longer rise time, which ensures that stress equilibrium is achieved prior to crack initiation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call