Abstract

This paper aims to research the cable-lead-in rod effect on a towed system through mathematical modeling and numerical simulations. The rod dynamics, as a key part of this study, is modeled using the combination of cable node governing equations and kinematic constraint conditions. As the first attempt to analyze such a problem, the rod is simply treated as an elastic cable segment so as to be incorporated into the dynamics of the cable, and a set of algorithm is then proposed based on the kinematic constraint conditions to fully describe its motions. Meanwhile, the cable and the underwater vehicle are modeled by the traditional lumped mass method and the 6 degree-of-freedom maneuverability equations for submarines respectively; the coupling boundary conditions besides the rod dynamics are also given to form the whole system’s model. Several numerical cases are performed to investigate the rod effect on the system in different maneuver situations. Some meaningful conclusions are drawn through comparative analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.