Abstract

Recent developments in the Internet of Vehicles (IoV) enabled the myriad emergence of a plethora of data-intensive and latency-sensitive vehicular applications, posing significant difficulties to traditional cloud computing. Vehicular edge computing (VEC), as an emerging paradigm, enables the vehicles to utilize the resources of the edge servers to reduce the data transfer burden and computing stress. Although the utilization of VEC is a favourable support for IoV applications, vehicle mobility and other factors further complicate the challenge of designing and implementing such systems, leading to incremental delay and energy consumption. In recent times, there have been attempts to integrate deep reinforcement learning (DRL) approaches with IoV-based systems, to facilitate real-time decision-making and prediction. We demonstrate the potential of such an approach in this paper. Specifically, the dynamic computation offloading problem is constructed as a Markov decision process (MDP). Then, the twin delayed deep deterministic policy gradient (TD3) algorithm is utilized to achieve the optimal offloading strategy. Finally, findings from the simulation demonstrate the potential of our proposed approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.