Abstract

Dynamic economic dispatch problem or DED is an extension of static economic dispatch problem or SED which is used to determine the generation schedule of the committed units so as to meet the predicted load demand over a time horizon at minimum operating cost under ramp rate constraints and other constraints. This work presents an efficient hybrid method based on particle swarm optimization (PSO) and termite colony optimization (TCO) for solving DED problem. The hybrid method employs PSO for global search and TCO for local search in an interleaved mode towards finding the optimal solution. After the first round iteration of local search by TCO, the best local solutions are considered by PSO to update the schedules globally. In the next round, TCO performs local search around each solution found by PSO. This paper reports the methodology and result of application of PSO–TCO hybrid to 5-unit, 10-unit and 30-unit power dispatch problems; the result shows that the PSO–TCO (HPSTCO) gives improved solution compared to PSO or TCO (when applied separately) and also other hybrid methods.

Highlights

  • The economic load dispatch problem (ELD) implies static economic dispatch problem or SED where the objective is to determine the optimal schedule of online generating units’ outputs so as to meet the load demand at a certain time at the minimum operating cost under various system and operational constraints

  • Result and discussion In order to review the effectiveness of Hybrid of PSO and TCO (HPSTCO), it is applied to solve the dynamic economic dispatch (DED) problem on three test systems having 5, 10 and 30 generators, considering valve point loading effect

  • The simulation in MATLAB is done on four different test cases of DED involving 5, 10 and 30 generating units: Case 4 30-unit system with valve point effects and ramp rate constraints without transmission losses

Read more

Summary

Introduction

The economic load dispatch problem (ELD) implies static economic dispatch problem or SED where the objective is to determine the optimal schedule of online generating units’ outputs so as to meet the load demand at a certain time at the minimum operating cost under various system and operational constraints. The objective of the dynamic economic dispatch (DED) problem is to schedule the generator outputs over a certain period of time economically. The DED problem divides the dispatch period into a number of small time intervals, and a SED is employed to solve the problem in each interval. Since the DED problem was introduced in 1980s, several optimization techniques and procedures have been used for solving the DED problem with complex objective functions or constraints. There were a number of classical methods that have been applied to solve this problem such as the lambda iterative method [2], gradient projection method

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call