Abstract

Due to mounting infiltration of solar and wind energy sources, it becomes essential to investigate its brunt on the dynamic economic dispatch. Here, solar–wind–thermal system integrating pumped-storage hydraulic unit has been considered. This work recommends chaotic fast convergence evolutionary programming (CFCEP) rooted in Tent equation for solving dynamic economic dispatch problem incorporating renewable energy sources and pumped-storage hydraulic unit. Chaotic sequences increase the exploitation ability in the searching space and enhance the convergence property. In the recommended technique, chaotic sequences have been pertained for acquiring the dynamic scaling factor setting in fast convergence evolutionary programming (FCEP). The efficiency of the recommended technique is revealed on two test systems. Simulation outcomes of the suggested technique have been matched up to those acquired by FCEP, differential evolution and particle swarm optimization. It has been observed from the comparison that the recommended CFCEP technique has the capability to confer with better quality solution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call