Abstract

Dynamiceco-driving is a well-known umbrella term describing speed control schemes that utilize connected and automated vehicle technology for the purpose of saving fuel. If dynamic eco-driving is to be widely prescribed as an integral part of widespread fuel-saving endeavors, its expected performance as part of the overall traffic system must be analyzed. Specifically, it must be determined to what extent this type of control remains effective in the presence of dense traffic. This paper presents a series of multi-vehicle traffic simulations, which begin to answer important questions surrounding the effects of dynamic eco-driving on traffic and its potential for fuel savings in a mixed traffic environment. Three representative methods of dynamic eco-driving are tested in various high traffic scenarios and the estimated fuel economy, trip time, and average speed results are compared. Independent variables include technology penetration rate and amount of traffic, quantified by the delay level of service of the road network’s traffic light facility. It is shown that, for the given test cases, average mpg increases linearly with technology penetration rate and dynamic eco-driving causes an average increase in mpg regardless of traffic amount. Overall results are promising for the usefulness of this clever class of fuel-saving technologies, in high traffic as well as low.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call