Abstract

Surfactants containing pH-switchable, carboxylic acid moieties are utilized in a variety of environmental, industrial, and biological applications that require controlled stability of hydrophobic droplets in water. For nanoemulsions, kinetically stable oil droplets in water, surface adsorption of the anionic form of the carboxylic acid surfactant stabilizes the droplet, whereas a dominant surface presence of the neutral form leads to destabilization. Through the use of dynamic light scattering, ζ-potential, and vibrational sum frequency scattering spectroscopy (VSFSS), we investigate this mechanism and the relative surface population of the neutral and charged species as pH is adjusted. We find that the relative population of the two surfactant species at the droplet surface is distinctly different than their bulk equilibrium concentrations. The ζ-potential measurements show that the surface concentration of the charged surfactant stays nearly constant throughout the stabilizing pH range. In contrast, VSFSS shows that the neutral carboxylic acid form increasingly adsorbs to the surface with increased acidity. The spectral features of the headgroup vibrational modes confirm this behavior and go further to reveal additional molecular details of their adsorption. A significant hydrogen-bonding interaction occurs between the headgroups that, along with hydrophobic chain-chain interactions, assists in drawing more carboxylic acid surfactant to the interface. The charged surfactant provides the stabilizing force for these droplets, while the neutral surfactant introduces complexity to the interfacial structure as the pH is lowered. The results are significantly different than what has been found for the planar oil/water studies where stabilization of the interface is not a factor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.