Abstract
In response to the challenge of handling large-scale 3D point cloud data, downsampling is a common approach, yet it often leads to the problem of feature loss. We present a dynamic downsampling algorithm for 3D point cloud maps based on an improved voxel filtering approach. The algorithm consists of two modules, namely, dynamic downsampling and point cloud edge extraction. The former adapts voxel downsampling according to the features of the point cloud, while the latter preserves edge information within the 3D point cloud map. Comparative experiments with voxel downsampling, grid downsampling, clustering-based downsampling, random downsampling, uniform downsampling, and farthest-point downsampling were conducted. The proposed algorithm exhibited favorable downsampling simplification results, with a processing time of 0.01289 s and a simplification rate of 91.89%. Additionally, it demonstrated faster downsampling speed and showcased improved overall performance. This enhancement not only benefits productivity but also highlights the system’s efficiency and effectiveness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.