Abstract

The safe evacuation of residents near a nuclear power plant during a nuclear accident is vital for emergency response planning. To tackle this challenge, considering the dynamic dispersion of radioactive materials in the atmosphere and its impact on evacuation routes under different meteorological conditions is crucial. This paper develops a dynamic dose-based emergency evacuation model (DDEEM), which is an efficient and optimized nuclear accident evacuation model based on dynamic radiological dose calculation, utilizing an improved A* algorithm to determine optimal evacuation routes. The DDEEM takes into account the influence of radiological plume dispersion and path selection on evacuation effectiveness. This study employs the DDEEM to assess radiological consequences and evacuation strategies for students residing 5 km from a Chinese nuclear power plant. Under various meteorological conditions, including the three typical meteorological conditions, random ordered and random unordered meteorological sequences, optimal routes obtained through the DDEEM effectively reduce radiological dose exposure and mitigate radiation hazards. The results indicate that all evacuation paths generated by the DDEEM have a maximum dose of less than 1 mSv. Through simulations, the model’s effectiveness and reliability in dynamic radiological environments in terms of radiological consequences and evacuation analysis is verified. The research provides valuable insights and a practical tool for nuclear power plant emergency decision-making, enhancing emergency management capabilities during nuclear accidents. The DDEEM offers crucial technical support and a solid foundation for developing effective emergency response strategies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.