Abstract
Atomic models of myosin subfragment-1 (S1) and the actin filament are docked together using resonance energy-transfer data from both pre- and postpowerstroke conditions. The quality of the resulting best fits discriminated between neck-region orientations of the S1 for a given set of experimental conditions. For measurements of the postpowerstroke states in the presence of ADP, resonance energy-transfer data alone are sufficient to dock the atomic models and provide evidence that S1 exists with at least two neck-region orientations under these conditions. To dock the prepowerstroke state, resonance energy-transfer data were used in combination with previous chemical cross-linking data to determine that a neck-region orientation similar to that of a proposed prepowerstroke state best fit the data. The resulting models determined independently from electron microscopy compare favorably with micrographs from the recent literature. The docking models by resonance energy transfer suggest that the larger movements in the light-chain binding domain are accompanied by twisting and rotating movements of the catalytic domain, causing a tilt of approximately 30 degrees during the weak-to-strong transition. This transition provides the displacement necessary to support motility and force generation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.