Abstract

DNA nanotubes hold great potential as drug delivery vehicles and as programmable templates for the organization of materials and biomolecules. Existing methods for their construction produce assemblies that are entirely double-stranded and rigid, and thus have limited intrinsic dynamic character, or they rely on chemically modified and ligated DNA structures. Here, we report a simple and efficient synthesis of DNA nanotubes from 11 short unmodified strands, and the study of their dynamic behavior by atomic force microscopy and in situ single molecule fluorescence microscopy. This method allows the programmable introduction of DNA structural changes within the repeat units of the tubes. We generate and study fully double-stranded nanotubes, and convert them to nanotubes with one, two and three single-stranded sides, using strand displacement strategies. The nanotubes can be reversibly switched between these forms without compromising their stability and micron-scale lengths. We then site-specifically introduce DNA strands that shorten two sides of the nanotubes, while keeping the length of the third side. The nanotubes undergo bending with increased length mismatch between their sides, until the distortion is significant enough to shorten them, as measured by AFM and single-molecule fluorescence photobleaching experiments. The method presented here produces dynamic and robust nanotubes that can potentially behave as actuators, and allows their site-specific addressability while using a minimal number of component strands.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.