Abstract

We consider a model of random access (slotted-aloha-type) communication networks of general topology. Assuming that network links receive exogenous arrivals of packets for transmission, we seek dynamic distributed random access strategies whose goal is to keep all network queues stable. We prove that two dynamic strategies, which we collectively call queue length based random access (QRA), ensure stability as long as the rates of exogenous arrival flows are within the network saturation rate region. The first strategy, QRA-I, can be viewed as a random-access-model counterpart of the max-weight scheduling rule, while the second strategy, QRA-II, is a counterpart of the exponential (EXP) rule. The two strategies induce different dynamics of the queues in the fluid scaling limit, which can be exploited for the quality-of-service control in applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.