Abstract
In a stand-alone DC microgrid featuring several distributed energy resources (DERs), droop control is adopted to achieve a proportional distribution of current among the DERs within the microgrid. The operation of the droop control mechanism leads to a variation in bus voltage, which is further amplified by the line impedance between the DC bus and DERs. This paper proposes an enhanced distributed secondary control technique aimed at achieving equitable current sharing and voltage regulation simultaneously within a DC microgrid. The proposed distributed secondary control is incorporated into the cyber layer of the microgrid, facilitating the exchange of information among the controllers. In the event of a communication link breakdown, this technique upholds the reliability of the entire system. The control loop utilizes a type-II fuzzy logic control framework for the adaptive selection of the control parameters to improve the control response. Furthermore, the proposed technique can handle both resistive and constant power loads without any particular prerequisites. Utilizing the Lyapunov method, appropriate stability criteria for the proposed controller have been formulated. Various tests were performed across a range of operational scenarios to assess the robustness of the proposed control technique through MATLAB/Simulink® models, which have been validated with real-time experiments. The outcomes revealed that the proposed control effectively achieves its control objectives within a DC microgrid, showcasing rapid responsiveness and minimal oscillation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.