Abstract

Surfaces with physicochemical properties that can be modulated using external stimuli offer great promise for designing responsive or adaptive materials. Here, we describe biocompatible dynamic scaffolds based on thin hydrogel coatings that reversibly hide and display surface chemical patterns in response to temperature changes. At room temperature, the gel absorbs water, triggering an elastic creasing instability that sequesters functionalized regions within tight folds in the surface. Deswelling at approximately 37 degrees C causes the gel surface to unfold, thereby regenerating the biomolecular patterns. Crease positions are directed by topographic features on the underlying substrate, and are translated into two-dimensional micrometre-scale surface chemical patterns through selective deposition of biochemically functionalized polyelectrolytes. We demonstrate specific applications of these dynamic scaffolds--selective capture, sequestration and release of micrometre-sized beads, tunable activity of surface-immobilized enzymes and reversible encapsulation of adherent cells--which offer promise for incorporation within lab-on-a-chip devices or as dynamic substrates for cellular biology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.