Abstract

A new method to assess the condensate drainage behavior of the air-side surface of compact heat exchangers—dynamic dip testing—is introduced. The new method is shown to provide highly repeatable data for real-time drainage. Results from experiments with more than 20 flat-tube and round-tube-and-fin heat exchangers are presented, and the data clearly show geometrical effects such as the impact of the tube type on condensate drainage. By comparing the results from dip testing to wind-tunnel experiments for the same heat exchangers, we find dip testing can serve as a powerful tool for assessing the condensate retention behavior. The coils retaining the most and the least condensate in a steady-state wind-tunnel test, likewise held the most and the least in a dip test. However, different amounts of water are retained on the air-side surface during dip tests and wind-tunnel tests. A model based on gravity, surface tension and drag effects is developed to help understand and predict the drainage behavior of heat exchangers. The new model and experimental approach are useful in screening heat exchangers for condensate retention and for assessing off-cycle drainage behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.