Abstract

Current methods to develop surfactant phase diagrams are time-intensive and fail to capture the kinetics of phase evolution. Here, the design and performance of a quantitative swelling technique to study the dynamic phase behavior of surfactants are described. The instrument combines cross-polarized optical and short-wave infrared imaging to enable high-resolution, high-throughput, and in situ identification of phases and water compositions. Data across the entire composition spectrum for the dynamics and phase evolution of a binary aqueous non-ionic surfactant solution at two isotherms are presented. This instrument provides pathways to develop non-equilibrium phase diagrams of surfactant systems-critical to predicting the outcomes of formulation and processing. It can be applied to study time-dependent material relationships across a diverse range of materials and processes, including the dissolution of surfactant droplets and the drying of aqueous polymer films.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call