Abstract
This paper describes a dynamic and quantitative method of diagnosing and estimating rail corrugation in railway tracks using acceleration data obtained from high-speed comprehensive inspection train. Although the amplitude of rail corrugation is small, it will arouse violent vibration between the wheel and rail under high-speed conditions, and accelerate the structural damage of track-vehicle system components. Combined with high-frequency Axle Box Acceleration (ABA), a time-frequency analysis-based Rail Corrugation Index and Energy Factor method are proposed to diagnose the rail corrugation of high-speed railway. The corrugation amplitude is estimated by the quadratic integral of filtered ABA. The new evaluation method uses the windowed energy index signal of the ABA to replace the original signal, and demodulates the high-frequency discrete response signal into a stable low-frequency energy signal without losing the vibration characteristics. Inverse SSTFT is applied to estimate the amplitude of rail corrugation. High-speed railway application results show that the proposed index can effectively diagnose the rail corrugation dynamically and quantitatively and estimate the degree of it.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.