Abstract

This paper presents an investigation of the detachment of a bubble from a solid flat substrate according to a dynamic scenario, i. e., due to strong vibrations of the surface shape of the bubble caused by normal nonacoustic harmonic vibrations of the substrate. The Layzer’s model based on an analysis of single-mode solutions near the bubble top was used to study its detachment in microgravity, where the dynamics of the bubble surface is due to competition between liquid inertia forces and surface tension forces. Detachment of the bubble from the substrate was determined from the condition of its elongation during vibrations by a magnitude comparable to the radius of the bubble in equilibrium. The dependence of the vibration intensity required for the detachment of the bubble on the problem parameters was determined using a number of empirical assumptions. The volume of the detached bubbles was estimated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call