Abstract

The deformation characteristics of silty soils under vibrational loads can easily change due to the wetting process, leading to the failure of roadbed structures. Commonly used methods for improving silty soils in engineering often yield unsatisfactory economic and ecological outcomes. As an environment-friendly soil improvement material, Xanthan gum has broad application prospects and is therefore considered a solidifying agent for enhancing silty soil properties in the Yellow River Basin. In this study, a series of tests is conducted using a scanning electron microscope and a dynamic triaxial testing apparatus to investigate the microstructure and dynamic deformation characteristics of unsaturated silty soil with varying xanthan gum contents during the wetting process. The results show that xanthan gum effectively fills voids between soil particles and adheres to their surfaces, forming fibrous and network structures. This modification enhances the inherent properties of the silty soil and significantly improves its stability under dynamic loading. Specifically, with increasing xanthan gum content, the dynamic shear modulus increases while the damping ratio decreases. During the wetting process, as suction decreases, the dynamic shear modulus decreases while the damping ratio increases. Xanthan gum reduces the sensitivity of the dynamic deformation characteristics of the treated silty soil to changes in suction levels. Finally, based on the modified Hardin-Drnevich hyperbolic model, a predictive model for the dynamic shear modulus and damping ratio of treated silty soil is proposed, considering the xanthan gum content. These research findings provide a theoretical basis for the construction and maintenance of water conservancy, slope stabilization, and roadbed projects in the Yellow River Basin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.