Abstract

This paper presents a modified Split Hopkinson Pressure Bar (SHPB) technique to obtain compressive stress-strain data for rubber materials. An experimental technique that modifies the conventional SHPB has been developed for measuring the dynamic compressive stress-strain responses of rubber materials with low mechanical impedance and low compressive strengths. This paper introduces an all-polymeric pressure bar set-up which achieves a closer impedance match between the pressure bar and the specimen materials. In addition, a pulse shaper is utilized to lengthen the rising time of the incident wave which helps the stress equilibrium and homogeneous deformation of rubber materials. It is found that the modified technique can determine the dynamic deformation behavior of NR and NBR rubber more accurately than those from the conventional SHPB technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.