Abstract
Experimental and theoretical studies were carried out on the dynamic deformation and penetration response characteristics of metal ellipsoidal thin curved shells under impact loads. The deformation characteristics of the impacted ellipsoid shell was investigated via the use of a light gas gun to carry out impact loading experiments at different speeds. Ten cases of experiments were conducted with the impact velocities distributed between 25.69 m/s and 118.97 m/s. Stereo digital image correlation (3D-DIC) technology was applied to capture the dynamic deformation and penetration process of the impacted shell. The recovered shells were measured, and the deformation characteristics were analyzed, along with the dynamic evolution, as observed through 3D-DIC analysis. Based on the experimental results, the displacement mode was summarized and the displacement distribution of the locally impacted ellipsoid shell was proposed. The governing equations were derived for the dynamic deformation and penetration of the impacted ellipsoid shell by means of the Lagrange equation. The proposed theoretical model was verified based on the experimental results. Finally, the influence of the curvature distribution on the impact resistance of ellipsoidal shells is discussed. The results indicated that the proposed theoretical model was effective in analyzing the large deformation and the penetration speed. Stretching the axial length of the ellipsoid shell in the impact direction improved its resistance to penetration. Stretching the axial length of the ellipsoid shell perpendicular to the impact direction improved its resistance to deformation, but reduced its resistance to penetration. Maintaining the triaxial ratio and appropriately reducing the size of the ellipsoidal shell improved its resistance to both deformation and penetration. The above research provides a reference for the analysis of the impact resistance of thin-walled curved shell structures in engineering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.