Abstract
Crowdsensing gradually forms a big data market where workers are willing to trade reusable data with different data collectors. It is challenging for the data collector to choose the transaction party due to the changeable value of the data, while determining the transaction price is also a tough issue. In this paper, we research the dynamic data transaction in crowdsensing. The contribution of the new data to the collector is modeled as the Shapley value, with each worker as a player in the cooperative game. The data collector then judges the contribution of the worker and determines the transaction object. To maximum the profit in the transaction, the collector will dynamically adjust the offering price to workers. The contextual bandit model is utilized in the price decision, with each candidate price as an arm and the time-variant data value as the context. Based on the classic LinUCB learning policy, we learn the mapping of the observed data value and the reward, and estimate the optimal reward in current transaction. The simulation on the data demonstrates that the actual reward got by the collector is close to the maximum reward he can get, which verifies the effectiveness of our scheme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.