Abstract

Battery charging controllers design and application is a growing industry direction. Fast and efficient charging of battery packs is a problem which is difficult and often expensive to solve using conventional techniques. The majority of existing works on intelligent charging systems are based on expert knowledge and heuristics. Not all features of the desired charging behavior can be attained by the hard-wired logic implemented by expert generated rules. Because the battery charging is a highly dynamic process and the chemical technology a battery uses varies significantly for different battery types, data mining technique can be of real importance for extracting the charging rules from the large databases, especially when the charging logic is to be continuously changed during the life of the battery dependent on the type and characteristics of the battery and utilization conditions. In this paper we use soft computing-based data mining technique for extraction of control rules for effective and fast battery charging process. The obtained rules were used for NiCd battery charging. The comparative performance evaluation was done among the existing charging control methods and the proposed system, which demonstrated a significant increase of performance (minimum charging time and minimum overheating) using the soft computing-based approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.