Abstract

In cloud storage mode, users lose physical control over their data. To enhance the security of outsourced data, it is vital to audit the data integrity of the data owners. However, most of the current audit protocols have a single application scenario and cannot accommodate the actual needs of individuals and enterprises. In this research, a safe and efficient auditing scheme is proposed that is based on a hierarchical Merkle tree. On the one hand, we use a hierarchical authentication data structure and local signature aggregation technique to reduce the scale of the Merkle tree. In addition, authoritative nodes are introduced to reduce the length of the authentication path and improve the update efficiency. On the other hand, we introduce a monitoring mechanism that is based on the original data integrity auditing model to analyze the cloud data, which improves the transparency and credibility of cloud service providers. In addition, we achieve incomplete data recovery through log analysis, which greatly reduces the number of replicas of files under the premise of multi-copy auditing, reduces the burden on cloud service providers, and improves the fairness of audit protocols. The theoretical analysis and experimental comparison prove that the method is secure and efficient. It can effectively reduce the computational overhead and storage overhead in integrity auditing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call