Abstract

AbstractWith an ever-growing attention Particle Swarm Optimization (PSO) has found many application areas for many challenging optimization problems. It is, however, a known fact that PSO has a severe drawback in the update of its global best (gbest) particle, which has a crucial role of guiding the rest of the swarm. In this paper, we propose two efficient solutions to remedy this problem using a stochastic approximation (SA) technique. For this purpose we use simultaneous perturbation stochastic approximation (SPSA), which is applied only to the gbest (not to the entire swarm) for a low-cost solution. Since the problem of poor gbest update persists in the recently proposed extension of PSO, called multi-dimensional PSO (MD-PSO), two distinct SA approaches are then integrated into MD-PSO and tested over a set of unsupervised data clustering applications. Experimental results show that the proposed approaches significantly improved the quality of the MD-PSO clustering as measured by a validity index function. Furthermore, the proposed approaches are generic as they can be used with other PSO variants and applicable to a wide range of problems.KeywordsParticle Swarm Optimizationstochastic approximationmulti-dimensional searchgradient descentdynamic data clustering

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.