Abstract
AbstractThe accidental ignition of polymer‐bonded explosives (PBXs) caused by hot spots has been the focus of domestic and international research. Micro‐crack friction plays a crucial role in the formation these hot spots. In this study, confined tests were conducted to investigate the ignition response of PBX under impact loading. The experimental results revealed that the PBX underwent ignition under the given conditions of a pressure load with a pulse width of 50 μs and an amplitude of 638 MPa. The viscoelastic statistical cracking model (Visco‐SCRAM) and hot‐spot ignition model were used to describe the damage behaviors and ignition responses of the PBX. The simulation results revealed that more severe damage occurs at the center of the impact face and its vicinity under confined impact conditions, which is consistent with the observed post‐test samples. Additionally, simulation results also predict a trapezoidal shape for the severely damaged region within the PBX. The findings of this study provide insights for understanding the damage behavior and the critical ignition of PBX under impact loading.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Propellants, Explosives, Pyrotechnics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.