Abstract

Cytosine DNA methylation plays an important role in plants: it can mediate gene expression to affect plant growth and development. However, little is known about the potential involvement of cytosine DNA methylation in apple trees as well as in response to alternate bearing. Here, we performed whole-genome bisulfate sequencing to investigate genomic CG, CHG, and CHH methylation patterns, together with their global mRNA accumulation and small RNA expression in "Fuji" apple trees. Results showed that "Fuji" apple trees have a higher CHH methylation than Arabidopsis. Moreover, genomic methylation analysis revealed that CG and CHG methylation were robustly maintained at the early stage of flower induction. Additionally, differentially methylated regions (DMRs), including hypermethylated and hypomethylated DMRs, were also characterized in alternate bearing (AB) apple trees. Intriguingly, the DMRs were enriched in hormones, redox state, and starch and sucrose metabolism, which affected flowering. Further global gene expression evaluation based on methylome analysis revealed a negative correlation between gene body methylation and gene expression. Subsequent small RNA analyses showed that 24-nucleotide small interfering RNAs were activated and maintained in non-CG methylated apple trees. Our whole-genome DNA methylation analysis and RNA and small RNA expression profile construction provide valuable information for future studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.