Abstract

With applied potential, the current distribution at the surface of a disk electrode is spatially nonuniform and time dependent. This distribution is important to control in applications that desire a uniform current density profile or minimal corrosion. We examine the current density profile of a capacitive disk electrode subjected to a voltage-step using finite element analysis software to solve the system of partial differential equations. In detailed analyses we show quantitatively that the current density shifts from peripheral enhancement to near-uniformity following 1/2 of the lumped element time constant. As charging continues, the current density is slightly enhanced in the central region. We present curves for the evolution of local "time constants" as time progresses and calculate their effective values. The model is intended to be the basis of future work to control the corrosion profile of biologically implantable electrodes of arbitrary shape. Data suggest a means to control corrosion by retarding the edges of a stimulus pulse. Additionally, smaller electrodes may be more effective in fully utilizing surface area for charge transfer due to their shorter time constants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call