Abstract

This paper introduces a non-Gaussian dynamic currency hedging strategy for globally diversified investors with ambiguity. It provides theoretical and empirical evidence that, under the stylized fact of non-Gaussianity of financial returns and for a given optimal portfolio, the investor-specific ambiguity can be estimated from historical asset returns without the need for additional exogenous information. Acknowledging non-Gaussianity, we compute an optimal ambiguity-adjusted mean-variance (dynamic) currency allocation. Next, we propose an extended filtered historical simulation that combines Monte Carlo simulation based on volatility clustering patterns with the semi-parametric non-normal return distribution from historical data. This simulation allows us to incorporate investor's ambiguity into a dynamic currency hedging strategy algorithm that can numerically optimize an arbitrary risk measure, such as the expected shortfall. The out-of-sample backtest demonstrates that, for globally diversified investors, the derived non-Gaussian dynamic currency hedging strategy is stable, robust, and highly risk reductive. It outperforms the benchmarks of constant hedging as well as static/dynamic hedging approaches with Gaussianity in terms of lower maximum drawdown and higher Sharpe and Sortino ratios, net of transaction costs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.