Abstract

The objective of this paper is to develop and validate a reliable, efficient and robust artificial neural network (ANN) model for online monitoring and prediction of crude oil fouling behavior for industrial shell and tube heat exchangers. To explore the complex dynamics of fouling, a new modeling strategy based on moving-window neural network approach is proposed. The essential character of this modeling approach is online updating of the ANN model whenever a new data block is available, so that it can effectively capture the slowly changing of process dynamics. The results of these models have been compared with appropriate sets of experimental data. The mean relative errors (MRE) of training and prediction subsets were about 6.61% and 8.06%, respectively. Since the data extraction in the refinery was performed every 2h, the modeling approach led to an MRE of about 8% for fouling rate prediction of the next 50h.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.