Abstract

(2)H NMR reveals two dynamic crossovers of supercooled water in nanoscopic (∼2 nm) confinement. At ∼225 K, a dynamic crossover of liquid water is accompanied by formation of a fraction of solid water. Therefore, we do not attribute the effect to a liquid-liquid phase transition but rather to a change from bulk-like to interface-dominated dynamics. Moreover, we argue that the α process and β process are observed in experiments above and below this temperature, respectively. Upon cooling through a dynamic crossover at ∼175 K, the dynamics of the liquid fraction becomes anisotropic and localized, implying solidification of the corresponding water network, most probably, during a confinement-affected glass transition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.