Abstract

A combined boundary and finite element method is developed and applied to study the dynamic behaviour of a system of flexible surface footings of arbitrary shape bearing on an elastic half-space. The proposed method employs the frequency domain Green's function for the surface of the elastic half-space while a layered plate model is used for the flexible footing. Both the footing and the surface of the half-space are discretized by 8-noded quadratical isoparametric elements, and the meshes are identical. Thus, the compatibility of displacements and equilibrium of forces between the footing and the half-space are fully satisfied. This model provides a better approximation of the stress concentration at edges of relatively rigid footings. Numerical examples demonstrating the effects due to the excitation frequency, the relative rigidity and the distance between footings on the interaction between two square footings are presented. The external forces can be either harmonic or transient.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call