Abstract

We propose that the dynamics of supercooled liquids and the formation of glasses can be understood from the existence of a zero-temperature dynamical critical point. To support our proposal, we derive a dynamic field theory for a generic kinetically constrained model, which we expect to describe the dynamics of a supercooled liquid. We study this field theory using the renormalization group (RG). Its long time behavior is dominated by a zero-temperature critical point, which for d>2 belongs to the directed percolation universality class. Molecular dynamics simulations seem to confirm the existence of dynamic scaling behavior consistent with the RG predictions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call