Abstract

The near-tip field of a dynamically propagating crack in an incompressible power-law hardening material is studied using the asymptotic method as an extension of Leighton et al. (Journal of the Mechanics and Physics of Solids, 1987, Vol.35, pp.541–563). The crack is subjected to tensile loads and propagates steadily under plane strain conditions. The material deformation is described by the J 2 flow theory of plasticity with infinitesimal displacement gradients. Results show that, in the present crack-tip field, (a) the angular variations of stresses, strains and particle velocities around the crack tip are fully continuous; (b) the stresses and strains at the crack tip are bounded; (c) there is a free parameter σeq0 which cannot be determined in the asymptotic analysis. Comparisons indicate that the present asymptotic solution matches well with full-field numerical results, and the parameter σeq0 can characterize the effects of the far field on the crack-tip field. Furthermore, the present solution approaches that of Leighton et al. (1987) in the limit as the material hardening exponent goes to infinity, but does not reduce to the accepted solution for quasi-statically growing cracks in the limit as the crack speed goes to zero.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.