Abstract

An efficient boundary element procedure for the dynamic analysis of crack propagation in unbounded and arbitrary shape finite bodies is presented. The procedure is based on the direct time domain formulation of the boundary element method. A moving singular element and a remeshing technique have been developed to model the asymptotic solution of the stresses near the propagating crack tip. These ideas are easily implemented for a boundary discretization as opposed to similar procedures previously developed in a finite element context. The method is applied to problems of dynamic crack propagation in finite and infinite elastic domains. The obtained numerical results are compared with infinite domain analytical solutions and with available numerical solutions for finite domains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.