Abstract

Moving surface loads cause crack extension at a constant subcritical speed between perfectly bonded materials. The materials differ only in thermal properties and are governed by coupled thermoelastic equations that admit as special cases Fourier heat conduction and thermal relaxation with one or two relaxation times. Convection from the crack surfaces is allowed and for the latter two models is itself influenced by thermal relaxation. A dynamic steady state of plane strain is assumed. Fourier heat conduction is shown to dominate away from the crack edge at low speeds; solution behavior at the crack edge at high speeds depends upon the particular thermal model. Thermal mismatch is seen to cause solution behavior similar to that for the isothermal bimaterial, and so insight into the case of general material mismatch is provided.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call