Abstract
Gene and protein expression is controlled so that cells can react to changing intra- and extracellular signals by modulating biochemical networks and pathways. We have previously shown that gene expression and the properties of expressed proteins are dynamically correlated. Here we investigated correlations between gene related parameters and gene expression patterns, and found statistically significant correlations in microarray datasets for different cell types, organisms and processes, including human B and T cell stimulation, cell cycle in HeLa cells, infection in intestinal epithelial cells, Drosophila melanogaster life span, and Saccharomyces cerevisiae cell cycle. Our method was applied to time course datasets individually for each time point. We derived from sequence information numerous parameters for nucleotide composition, two-base composition, codon usage, skew parameters, and codon bias. In addition to coding regions, we also investigated correlations for complete genes and introns. Significant dynamic correlations were identified for each of the analyses. Our method also proved useful for detecting dynamic shifts in gene expression profiles, such as in the D. melanogaster dataset. Detection of changes in the properties of expressed genes and proteins might be useful for predicting or following biological processes, responses, growth, differentiation and possibly in related disorders.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.