Abstract

Molecular switches are an intensive area of research, and in particular, the control of multistate switching is challenging. Herein we introduce a general and versatile strategy of dynamic covalent switches and communicating networks, wherein distinct states of reversible covalent systems can induce addressable fluorescence switching. The regulation of intramolecular ring/chain equilibrium, intermolecular dynamic covalent reactions (DCRs) with amines, and both permitted the activation of optical switches. The variation in electron-withdrawing competition between the fluorophore and 2-formylbenzenesulfonyl unit afforded diverse signaling patterns. The combination of switches in situ further enabled the creation of communicating networks for multistate color switching, including white emission, through the delicate control of DCRs in complex mixtures. Finally, reversible and recyclable multiresponsive luminescent materials were achieved with molecular networks on the solid support, allowing visualization of different types of vapors and quantification of primary amine vapors with high sensitivity and wide detection range. The results reported herein should be appealing for future studies of dynamic assemblies, molecular sensing, intelligent materials, and biological labeling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.