Abstract

AbstractDynamic covalent networks (DCNs) use chemical bonds that break and reform at appropriate processing conditions to allow reconfiguration of the networks. Recently, the acylsemicarbazide (ASC) motif has been added to the repertoire of such dynamic covalent bonds, which is capable of hydrogen bonding as well as dynamic bond exchange. In this study, we show that its sulfur congener, thioacylsemicarbazide (TASC), also acts as a dynamic covalent bond, but exchanges at a slower rate than the ASC moiety. In addition, siloxane‐based DCNs comprising either ASC or TASC motifs or a varying composition of both show tunable relaxation dynamics, which slow down with an increasing amount of TASC motifs. The reduction in stress relaxation goes hand in hand with a reduction of creep in the network and can be tuned by the ASC/TASC ratio. All networks are readily processed using compression molding and dissolve when treated with excess hydrazide in solution. The ability to control network properties and creep in dynamic covalent polymeric networks by small changes in the molecular structure of the dynamic bond allows a generalized synthetic approach while accommodating a wide temperature window for application.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call