Abstract

Chalcogen-centered cascade exchange chemistry is increasingly understood to account for thiol-mediated uptake, that is, the ability of reversibly thiol-reactive agents to penetrate cells. Here, reversible Michael acceptors are shown to enable and inhibit thiol-mediated uptake, including the cytosolic delivery of proteins. Dynamic cyano-cinnamate dimers rival the best chalcogen-centered inhibitors. Patterns generated in inhibition heatmaps reveal contributions from halogen-bonding switches that occur independent from the thyroid transporter MCT8. The uniqueness of these patterns supports that the entry of tetrel-centered exchangers into cells differs from chalcogen-centered systems. These results expand the chemical space of thiol-mediated uptake and support the existence of a universal exchange network to bring matter into cells, abiding to be decoded for drug delivery and drug discovery in the broadest sense.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.