Abstract

We study the equilibrium time correlations for the conserved fields of classical anharmonic chains and argue that their dynamic correlator can be predicted on the basis of nonlinear fluctuating hydrodynamics. In fact, our scheme is more general and would also cover other one-dimensional Hamiltonian systems, for example, classical and quantum fluids. Fluctuating hydrodynamics is a nonlinear system of conservation laws with noise. For a single mode, it is equivalent to the noisy Burgers equation, for which explicit solutions are available. Our focus is the case of several modes. No exact solution has been found so far, and we rely on a one-loop approximation. The resulting mode-coupling equations have a quadratic memory kernel and describe the time evolving 3×3 correlator matrix of the locally conserved fields. Long time asymptotics is computed analytically, and finite time properties are obtained through a numerical simulation of the mode-coupling equations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call