Abstract

This paper proposes a method to establish an optimal dynamic coordinated condition-based maintenance strategy that considers harsh external conditions, for example, harsh weather conditions. Component deterioration is modeled as a Markov process based on physical characteristics, with the effects of harsh external conditions represented as probabilistic models. The proposed model involves interactions between different maintenance strategies on various components, as well as influences on the operation of the entire system. The optimal maintenance strategies are obtained by optimizing the proposed model with the cost to go, including system reliability cost and maintenance cost. This proposed model is solved using a backward induction algorithm associated with a search space reduction approach developed to reduce the simulation time. Two IEEE systems and one actual system validate the proposed model. The results show that this optimal maintenance strategy model that considers harsh external conditions provides insight for scheduling appropriate maintenance activities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call