Abstract
Recently, several in-loop filtering algorithms based on convolutional neural network (CNN) have been proposed to improve the efficiency of HEVC (High Efficiency Video Coding). Conventional CNN-based filters only apply a single model to the whole image, which cannot adapt well to all local features from the image. To solve this problem, an in-loop filtering algorithm based on a dynamic convolutional capsule network (DCC-net) is proposed, which embeds localized dynamic routing and dynamic segmentation algorithms into capsule network, and integrate them into the HEVC hybrid video coding framework as a new in-loop filter. The proposed method brings average 7.9% and 5.9% BD-BR reductions under all intra (AI) and random access (RA) configurations, respectively, as well as, 0.4 dB and 0.2 dB BD-PSNR gains, respectively. In addition, the proposed algorithm has an outstanding performance in terms of time efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.